17 Mindblowing Python Automation Scripts I Use Everyday

17 Mindblowing Python Automation Scripts I Use Everyday

 


Python is an incredibly versatile language that excels at automation. Whether it's automating mundane tasks, managing files, or fetching data, Python scripts can significantly boost productivity. Here, I share 17 Python automation scripts that I use daily.

Table of Contents

  1. Email Automation
  2. Web Scraping
  3. File Management
  4. Data Analysis
  5. Social Media Automation
  6. Reminder Notifications
  7. Data Backup
  8. Report Generation
  9. Image Processing
  10. Web Testing
  11. API Integration
  12. Database Management
  13. Finance Management
  14. Task Automation
  15. Weather Forecasting
  16. Personal Assistant
  17. Network Monitoring

1. Email Automation

Sending and receiving emails can be automated using Python. With libraries like smtplib and imaplib, you can send emails, read emails, and even sort your inbox.

Script Example:

python
import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText def send_email(subject, body, to_email): from_email = "your_email@example.com" from_password = "your_password" msg = MIMEMultipart() msg['From'] = from_email msg['To'] = to_email msg['Subject'] = subject msg.attach(MIMEText(body, 'plain')) server = smtplib.SMTP('smtp.example.com', 587) server.starttls() server.login(from_email, from_password) server.send_message(msg) server.quit() send_email("Test Subject", "This is a test email body.", "recipient@example.com")

2. Web Scraping

Web scraping involves extracting data from websites. With BeautifulSoup and requests, you can gather information from web pages effortlessly.

Script Example:

python
import requests from bs4 import BeautifulSoup url = "http://example.com" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') data = soup.find_all('p') # Extracts all paragraph tags for p in data: print(p.text)

3. File Management

Managing files and directories is easy with Python. You can create, move, rename, and delete files using the os and shutil modules.

Script Example:

python
import os import shutil def organize_files(directory): for filename in os.listdir(directory): if filename.endswith('.txt'): shutil.move(os.path.join(directory, filename), os.path.join(directory, 'TextFiles', filename)) elif filename.endswith('.jpg'): shutil.move(os.path.join(directory, filename), os.path.join(directory, 'Images', filename)) organize_files('/path/to/your/directory')

4. Data Analysis

Python's pandas library is perfect for data analysis. You can read, manipulate, and analyze large datasets with ease.

Script Example:

python
import pandas as pd data = pd.read_csv('data.csv') print(data.describe())

5. Social Media Automation

Automating social media posts can save a lot of time. Libraries like tweepy for Twitter and instabot for Instagram make this task straightforward.

Script Example:

python
import tweepy def tweet_message(message): consumer_key = 'your_consumer_key' consumer_secret = 'your_consumer_secret' access_token = 'your_access_token' access_token_secret = 'your_access_token_secret' auth = tweepy.OAuth1UserHandler(consumer_key, consumer_secret, access_token, access_token_secret) api = tweepy.API(auth) api.update_status(status=message) tweet_message("Hello, Twitter!")

6. Reminder Notifications

With libraries like plyer, you can create desktop notifications for reminders.

Script Example:

python
from plyer import notification def remind_me(title, message): notification.notify( title=title, message=message, timeout=10 ) remind_me("Meeting Reminder", "You have a meeting at 10 AM.")

7. Data Backup

Automate the backup of important files to a specified location or cloud service using shutil.

Script Example:

python
import shutil import os def backup_files(src, dest): if not os.path.exists(dest): os.makedirs(dest) for filename in os.listdir(src): shutil.copy(os.path.join(src, filename), dest) backup_files('/path/to/source', '/path/to/destination')

8. Report Generation

Generate reports in various formats (PDF, Excel) using libraries like reportlab and xlsxwriter.

Script Example:

python
import xlsxwriter def generate_report(data, filename): workbook = xlsxwriter.Workbook(filename) worksheet = workbook.add_worksheet() row, col = 0, 0 for item in data: worksheet.write(row, col, item) row += 1 workbook.close() generate_report(['Data1', 'Data2', 'Data3'], 'report.xlsx')

9. Image Processing

Process images by resizing, cropping, and filtering using PIL (Pillow).

Script Example:

python
from PIL import Image def resize_image(input_image_path, output_image_path, size): original_image = Image.open(input_image_path) resized_image = original_image.resize(size) resized_image.save(output_image_path) resize_image('input.jpg', 'output.jpg', (800, 600))

10. Web Testing

Automate web testing using selenium.

Script Example:

python
from selenium import webdriver def test_login(url, username, password): driver = webdriver.Chrome() driver.get(url) driver.find_element_by_name('username').send_keys(username) driver.find_element_by_name('password').send_keys(password) driver.find_element_by_name('submit').click() test_login('http://example.com/login', 'user', 'pass')

11. API Integration

Integrate with various APIs to fetch or send data using requests.

Script Example:

python
import requests def get_weather(api_key, city): url = f'http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}' response = requests.get(url) weather_data = response.json() print(weather_data) get_weather('your_api_key', 'London')

12. Database Management

Automate database tasks like fetching, updating, and deleting records using sqlite3 or other database libraries.

Script Example:

python
import sqlite3 def fetch_data(db_name, query): conn = sqlite3.connect(db_name) cursor = conn.cursor() cursor.execute(query) data = cursor.fetchall() conn.close() return data print(fetch_data('example.db', 'SELECT * FROM users'))

13. Finance Management

Track your expenses and manage your budget using Python scripts and pandas.

Script Example:

python
import pandas as pd def track_expenses(file): df = pd.read_csv(file) print(df.groupby('Category').sum()) track_expenses('expenses.csv')

14. Task Automation

Automate repetitive tasks such as moving files, sending emails, or any daily routine.

Script Example:

python
import os import shutil def move_files(source, destination, file_extension): for filename in os.listdir(source): if filename.endswith(file_extension): shutil.move(os.path.join(source, filename), destination) move_files('/path/to/source', '/path/to/destination', '.txt')

15. Weather Forecasting

Fetch and display weather forecasts using public APIs.

Script Example:

python
import requests def get_weather(city, api_key): url = f'http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}' response = requests.get(url) data = response.json() print(f"Weather in {city}: {data['weather'][0]['description']}") get_weather('New York', 'your_api_key')

16. Personal Assistant

Create a personal assistant to manage your daily tasks and provide information.

Script Example:

python
import pyttsx3 import speech_recognition as sr def speak(text): engine = pyttsx3.init() engine.say(text) engine.runAndWait() def listen(): recognizer = sr.Recognizer() with sr.Microphone() as source: print("Listening...") audio = recognizer.listen(source) try: text = recognizer.recognize_google(audio) print(f"You said: {text}") return text except sr.UnknownValueError: print("Sorry, I did not understand that.") return "" speak("How can I help you today?") command = listen()

17. Network Monitoring

Monitor your network using Python scripts and libraries like psutil.

Script Example:

python
import psutil def monitor_network(): net_io = psutil.net_io_counters() print(f"Bytes sent: {net_io.bytes_sent}") print(f"Bytes received: {net_io.bytes_recv}") monitor_network()

These scripts demonstrate the versatility and power of Python in automating a wide array of tasks. By incorporating these scripts into your daily workflow, you can save time and focus on more critical activities.

Chart: Automation Script Usage

Below is a simple chart illustrating the frequency of usage of these automation scripts in my daily routine:

plaintext
Scripts | Usage Frequency --------------------------------|---------------- Email Automation | High Web Scraping | High File Management | Medium Data Analysis | High Social Media Automation | Medium Reminder Notifications | Low Data Backup | Medium Report Generation | Medium Image Processing | Low Web Testing | Low API Integration | High Database Management | Medium Finance Management | High Task Automation | High Weather Forecasting | Medium Personal Assistant | Low Network Monitoring | Low

By leveraging Python's powerful libraries and simple syntax, these automation scripts can transform your daily tasks, making your workflow more efficient and productive.

Comments

Popular posts from this blog

Google Top 7 Algorithm Updates

What Happens When You Start Reading Every Day